Relaxation of dilute polymer solutions following extensional flow 1

نویسندگان

  • Patrick S. Doyle
  • Eric S.G. Shaqfeh
  • Gareth H. McKinley
  • Stephen H. Spiegelberg
چکیده

The relaxation of dilute polymer solutions following stretch in uniaxial extensional flow is investigated via Brownian dynamic simulations of a flexible freely-draining bead-rod chain. The bead-rod chain simulations are compared to Brownian dynamic simulations of a FENE dumbbell and numerical calculations of a FENE-PM chain. A universal relaxation curve for the stress decay from steady-state is found by shifting the results to lie on the curve described by the relaxation of an initially straight chain. For all the models investigated, the initial rapid decay of the polymer stress decreases at a rate which scales for large Weissenberg number, Wi as Wi. Our universal curve is in good qualitative and in some cases quantitative agreement with the available experimental data: it is particularly good in predicting decay after stretch at the largest strains. We find hysteresis in comparing the stress versus birefringence during the startup of flow and subsequent relaxation for the bead-rod chain and FENE dumbbell, but not for the FENE-PM chain. The hysteresis in the latter model is lost in the preaveraging of the nonlinear terms. The bead-rod model also displays a configuration hysteresis. The hysteresis observed in these models is in qualitative agreement with recent experiments involving polystyrene-based Boger fluids. © 1998 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How dilute are dilute solutions in extensional flows?

e investigate the concentration dependence of the characteristic relaxation time of dilute polymer olutions in transient uniaxial elongational flow. A series of monodisperse polystyrene solutions of ve different molecular weights 1.8 106 M 8.3 106 g/mol with concentrations spanning ve orders of magnitude were dissolved in two solvents of differing solvent quality diethylphthalate and oligomeric...

متن کامل

The Extensional Rheology of Semi- Dilute Dna Solutions

The rheological behaviour of polymer melts and dilute polymer solutions in elongational flow have been extensively examined through experiments and theoretical predictions. However, an experimental study to understand the extensional rheological properties of polymer solutions in the semi-dilute regime is currently lacking in terms of a systematic examination of the effects of concentration and...

متن کامل

Observation of polymer conformation hysteresis in extensional flow.

Highly extensible Escherichia coli DNA molecules in planar extensional flow were visualized in dilute solution by fluorescence microscopy. For a narrow range of flow strengths, the molecules were found in either a coiled or highly extended conformation, depending on the deformation history of the polymer. This conformation hysteresis persists for many polymer relaxation times and is due to conf...

متن کامل

Extensional Relaxation Times of Dilute, Aqueous Polymer Solutions

We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional vi...

متن کامل

Extensional opto-rheometry with biofluids and ultra-dilute polymer solutions

Complex fluids containing long polymer chains exhibit measurably large resistance to stretching or extensional flows, due to additional stresses generated by the extensional deformation of the underlying fluid microstructure. Understanding and quantifying the response of such elastic fluids to extensional flows is necessary for optimizing fluid composition for technological applications like in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998